- Budziewicz, H., Wilson, J. M. and Djerassi, C. (1963) J. Am. Chem. Soc. 85, 3688.
- Anjeneyulu, A. S. R., Rao, Ramachandra, Subrahmanyam, C. and Murty, K. Suryanarayana (1973) Tetrahedron 29, 3909.
- Beaton, J. M., Spring, F. S., Stevenson, R. and Stewart, J. L. (1958) Tetrahedron 2, 246.
- Courtney, J. L., Gascoingne, R. M. and Szumer, A. Z. (1958) J. Chem. Soc. 881.

Phytochemistry, Vol. 26, No. 5, pp. 1540-1541, 1987. Printed in Great Britain.

0031-9422/87 \$3.00+0.00 © 1987 Pergamon Journals Ltd.

ENT-ISOLARICIRESINOL IN RESEDA SUFFRUTICOSA

J. G. URONES, J. DE PASCUAL TERESA, I. SÁNCHEZ MARCOS and D. DÍEZ MARTÍN
Departamento de Química Orgánica, Facultad de Química, Universidad de Salamanca, Salamanca, Spain

(Received 20 June 1986)

Key Word Index—Reseda suffruticosa; Resedaceae; ent-isolariciresinol; lignan.

Abstract—A new lignan, ent-isolariciresinol, has been isolated from the ethanolic extract of the aerial parts of Reseda suffruticosa together with sitosterol glucoside.

INTRODUCTION

This communication is the first to describe the compounds of the *Reseda suffruticosa*, an endemic plant of Spain and present throughout the Iberian Peninsula on calcareous soil.

RESULTS AND DISCUSSION

Reseda suffruticosa specimens were collected in July at Chinchón (Madrid, Spain). They were submerged in EtOH for several days at room temperature. From the ethanolic extract of Reseda suffruticosa, 5.5% of the aerial parts of the plant (dry weight), the benzene-soluble part (45.7%) was separated and the residue was separated into a water-soluble (48.0%) and a n-BuOH-soluble fractions (52.0%). The n-BuOH-soluble fraction was separated by CC and 1 crystallized from the CHCl₃-MeOH (9:1) eluate. After acetylation of the residual liquids and further CC, the acetyl derivatives 2 and 3 were isolated.

Compound 1 is an aromatic hydroxy derivative (3400, 1615, 1525 cm⁻¹ in IR spectrum). The ¹H NMR spectrum (Table 1) shows signals of two OMe and the following groups: two CH-CH₂OH and Ar-CH₂-CH. One of the aromatic systems was found to be 1,3,4-trisubstituted, while the other was 1,2,4,5-tetrasubstituted. The ¹³C NMR spectrum reveals signals for 21 carbons: three Me, three CH₂, eight CH (five sp²) and seven completely substituted carbons of which six are sp² hybridized. Compound 2 was obtained by acetylation with

Ac₂O-C₅H₅N and in its ¹H NMR spectrum (see Table 1) four signals corresponding to acetoxyl groups could be observed.

The physical and spectroscopic properties of 2 ($[\alpha]_D$ + 3.6) and those of isolariciresinol tetraacetate [1] ($[\alpha]_D$ - 3.5) are the same except the sign of rotation, since 1 has a *ent*-isolariciresinol structure. Compound 3 is identified as sitosterol glucoside.

Table 1. 1 H NMR of lignans

	i (CD₃OD)	2 (CDCl ₃)	2 (C ₆ D ₆)
H-2	6.60 d (1.98)	6.71 d (1.95)	6.69 d (1.95)
H-5	6.66 d (7.90)	6.97 d (8.06)	6.96 d (8.06)
H-6	6.52 dd (7.90, 1.98)	6.70 dd (8.06, 1.95)	6.60 dd (8.06, 1.95)
H-7	(1.50, 2.50)	3.95 d (10.71)	3.83 d (10.74)
H-8	1.69 m		1.92 m
H-9 ^a _b	3.21 m	4.08 dd (11.7, 2.98) 3.98 dd (11.7, 3.49)	4.04 m
H-2'	6.11 d (0.79)	6.42 d (0.98)	6.45 d (0.98)
H-5'	6.54 d (0.79)	6.67 d (0.98)	6.74 d (0.98)
H-7'a	2.68 d (7.30)	2.89 d (7.30)	2.68 d (7.32)
H-8'	1.91 m	` ,	2.11 m
H-9'a	3.31 m	4.24 dd (11.30, 4.30) 4.1 d (11.30)	4.24 dd (11.47, 4.39) 4.04 m
ОМс	3.65 s	3.76 s	3.36 s
OMe	3.67 s	3.81 s	3.31 s
CH ₃ -COO			1.87 s
			1.76 s
			1.75 s
			1.73 s

Table 2. ¹³C NMR data for entisolariciresinol and its acetate

С	(CD ₃ OD)	2 (CHCl ₃)
1	134.1	138.77
2	114.0	113.42
3	147.1	151.32
4	145.1	142.86
5	116.0	122.93
6	123.1	121.63
7	48.0	47.36
8	48.0	43.62
9	62.5	63.28
1'	129.0	134.16
2'	112.4	112.03
3'	148.9	149.54
4'	145.8	138.28
5′	117.3	123.80
6'	138.5	131.28
7'	33.5	33.10
8′	40.1	35.36
9′	66.0	66.34
OMe	56.4	56.04
OMe	56.4	55.97

The acetyl C=O and Me shifts are 170.98, 170.82, 169.10, 168.92 and 20.86, 20.81, 20.69, 20.61, respectively.

EXPERIMENTAL

Mps uncorr; ¹H NMR: 200 MHz, CDCl₃, TMS as int. standard; ¹³C NMR: 50.3 MHz.

Extraction and isolation. The aerial part (830 g) of R. suffruticosa collected at Chinchón (Madrid, Spain), was dried and extracted with EtOH for several days. The EtOH extract (46 g) was concentrated in vacuo and extracted with benzene (21 g). The insoluble residue (25 g) was fractionated with n-BuOH (13 g) and H₂O (12 g). CC of the n-BuOH extract, the fraction eluted with CHCl₃-MeOH (9:1), yielded by crystallization 1 and by treatment of the residue with Ac₂O-C₅H₅N and CC, later eluting with hexane-AcOEt, 2 and 3.

ent-Isolariciresinol (1). Mp 152-154° (from CHCl₃-MeOH); $[\alpha]_D^{25}$ - 53.8 (c, 1.47, MeOH).

ent-Isolariciresinol tetraacetate (2). Mp 163° ; $[\alpha]_D^{25} + 3.6$ (c, 1.15, CHCl₃).

Sitosterol β -D-glucoside (3). Mp 169°, $[\alpha]_D^{25} - 35$ (c, 0.4, CHCl₃); IR, ¹H and ¹³C NMR and MS spectral data identical to lit. values.

REFERENCE

 Ferreira Fonseca, S., de Paira Campello, J., Barata, L.-Ruveoda, E. (1978) Phytochemistry 17, 499.